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Starting from the MO-LCAO energy expression with an approximate correction 
for left-right correlation formalisms are derived that agree with those of  some 
current semi-empirical schemes, but where the parameters usually fitted to experi- 
mental results are given explicitly in an ab initio way. The approximations neces- 
sary for deriving the different schemes as well as the range of their validity are 
discussed. For zr-electron systems ab initio values of the ~-parameters (both 
thermochemical and spectral) are derived. 
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1. Introduction 

The progress of computational quantum chemistry in the past 15 years has been such 
that many properties of small and medium-sized molecules can be calculated to an 
accuracy competitive with that of experimental determination [1 ]. Nevertheless this 
progress had little impact on a qualitative understanding of the chemical bond. In fact, 
two branches of theoretical chemistry exist independent of and scarcely influenced by 
the ab initio techniques and their applications, namely 

a) the qualitative interpretation of the chemical bond which is based on concepts that 
originated in the early days of quantum chemistry and which is widely used in text- 
books of chemistry, 

b) the field of the highly simplified semi-empirical methods which are often successful 
in limited areas of application and which, due to their simplicity, can easily be 
discussed and interpreted in terms of certain quantities inherent in the theory. 

In this series of papers we outline a formalism starting from a rigorous ab initio energy 
expression that allows for a pictorial discussion of the chemical bond, somewhat in the 
spirit of Ruedenberg [2]. Part I of this series [3] was mainly concerned with point a) 
mentioned above. In the present Part II our aim is to recast the rigorous equations into 
formalisms of various semi-empirical schemes, which enables us to perform calculations 
corresponding to these semi-empirical methods, but with ab initio parameters. 

This helps us to state both the domains of applicability of these semi-empirical methods 
and give a direct physical interpretation of the parameters that enter the theories. 
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Methods have recently been published for deriving an effective valence-shell Hamiltonian 
from first principles [4, 5]. The corresponding expressions for the semi-empirical para- 
meters are exact in principle but are so terribly complicated that they seem to be of 
little practical use for the objectives described above. Our formulae, on the other hand, 
involve certain approximations. Therefore they are exact only in exceptional cases but 
they are easily related to relevant physical concepts. 

In Sect. 2 we give a brief outline of our method and all the definitions and equations 
necessary for the following derivations. The expression for the binding energy is well 
suited to serve as a starting point for further approximations that will lead to simplified 
equations with structures similar to some well-known semi-empirical schemes (Sect. 3). 
In Sect. 4 we deal with the problem of the justification of one-electron theories, and in 
Sect. 5 we examine in detail those merits and weaknesses of the different approximate 
formalisms that our approach is able to reveal. 

2. Outline of the Basic Formalism 

In Part I of this series ([3] ,  hereafter referred to as I) we started with a comparison of 
the bonding situations in H~- and H2 in order to examine the essential differences be- 
tween a one-electron and a two-electron bond as regards fragmentation and interpre- 
tation of the binding energy. The general procedure of energy fragmentation adopted 
in I, as well as the basic concepts, are closely related to the work of Ruedenberg [2]. 
In the case of H~- a fragmentation of the binding energy into quasiclassical, promotion, 
and interference parts has proven very useful for a better understanding of the physical 
mechanism of bonding [2, 6], and we found that this kind of fragmentation can also 
be justified for closed-shell molecules with unpolar or weakly polar bonds, provided one 
takes care of the essential non-classical two-electron effects like two-electron inter- 
ference, left-right correlation, and sharing penetration. 

Our procedure is as follows: 

The energy of a closed-shell molecule in the one-determinant approximation is (atomic 
units are used throughout this work) 

, ~-,ZuZv 
e =  2 hi, + I2(iilw)-(ijlj i)l  7 - -  (1) 

."  i,j z.,~v Rtz v 

where i,j run over the doubly occupied MO's, 12 and v denote the nuclei, the Mulliken 
notation for the two-electron integrals is used, and the one-electron operator is defined 
by 

h(k)  = --�89 Ak -- Z .  
r#ic 

(k denotes the kth electron). 

The MO's are given as linear combinations of atomic orbitals {X} 

r ~ i 
= c u , ~ X u s  (2) 

/ . t ,  ,~ 

where s counts the AO's at center/~. 
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The interference parts of the two-electron integrals (lasVtl KuXv) are defined as 

+ (vtvtI KuKu) + (vtl2tl Xv~.v)] 

and are contracted to one- and two-center terms: 

(3) 

E'u= ~ Rus,**tRuu,uv {2[#slatllaulav] - [l~stav[#ul~t] ) 
s,t,bl ,V 

(4) 

gl~s,v~ = 

where 

~, ~, RKu,X~ (2[IJsVt[KuXv] - [l~sX~lKuvt] 
K,1A.~.,U 

for/~, v, K, X not all equal 

(5) 

R u s ,  v t  = ~ i i c#sCv t .  
i 

The energy expression is simplified by introduction of charge and bond orders 

qus = 2 ~ Rus, vtSvt, u s (6) 
12, l 

Pus, vt = 2 Rus,~uSKu, v t Rvt, KuSKu,u 

+Rus'vt  K,u ~ X, vE SusKuRKu, ,xvSxv, v t ] .  (7) 

The next step is the separation of the different physical effects by defining a few 
parameters. 

The one-center parameter 

%~ = - �89215 - Z . ( ~  " 1 Pslas) + 7g ,  s,~s (8) 

is essentially the energy of the AO Xus in the field of nucleus U, with a relatively small 
two-electron interference correction. The "penetrat ion integral" is given by 

(12" ladas) :- f i X ,  sO) I a r ~  drl .  

The "resonance parameter" 

K 

K(:/:p,) Kt:~ v) 
(9) 

is mainly a two-center term but contains, in addition, the interference parts of  the 
three-center penetration integrals. 



310 F. Driessler and W. Kutzelnigg 

Finally, we can remove the quasiclassical contributions in ~ by the definition of a 
"reduced resonance parameter" (first used by Mulliken [7] ) 

__1 ~us, vt = ~,s, vt :~S1~s, vt(C%s + ~vr) (10) 

that contains nothing else but all of the one- and two-electron interference terms (for 
a detailed justification of this interpretation, see I). 

With the use of Eqs. (2)-(10) one can cast the energy expression (1) into the form 

E ~ [ ~  q~s~s+Eu] +2 ~ ~ ~ i ~ = t Cps/3ps, vtCv t i  
u L J s  ~,s) 4= (v,t) i 

+ l E E  [qusqvt - gPus, vt] (PsUs lVrVt) 
~,8 V,t 

~<vL Rpv S 

(11) is still the MO-LCAO energy we started from. Now we replace the term 

1 2 
- -  ~ P l~s, v t  (IJstls ] V tP t) 

by 

1 2 
- p , s .  t [ (ram I usu ) + ( , t , t  I vtvt)] .  

and it is shown in I that in this way we approximately take into account the left-right 
correlation while neglecting the sharing penetration terms in (11). The "sharing penetra- 
tion effect" means increase of the intra-atomic and corresponding decrease of the inter- 
atomic pair density in the process of bond formation. At small and intermediate 
distances sharing penetration is of considerable importance, and therefore we have to 
introduce a compensating correction in addition to the correlation correction described 
above. It turned out that in the H 2 molecule one gets a very accurate potential curve 
if one replaces the MO interference term by the respective VB term, and so we replace 
the ~ and ~ parameters by parameters/3 and ~'(I/31 < I~l ) in such a way that the 
corresponding energy increase compensates the same percentage of the correlation 
correction as the shift from MO to VB interference does in the case of H 2. 

If we split the final energy expression into one- and two-center terms 

e = E ( E  (1) + E  (2))+ 2 (E (1) + E # 7  )) 
/.t P<v k pv 

we get the "one-electron" terms (remember that they contain two-electron inter- 
ference contributions) 

+ t i i 

i , , t  ~ 
(12a) ! 

E ( ~ ) = 4  ~ s~,t c~s/3us'vtcivt ) 
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or, alternatively, 

E (1 )=4  2 2 i i C#s  7 # s ,  v t C u t  
i g, t 

(12b) 

and the "two-electron" terms 

~(2)={_~[(q,,)~ 1 2 2 2 , 2 ] 
- P.s, v t -  ~Pus, us (l~slJslt~s#s) 

v(4=u) t 

qusqut -- gPus, u (tJsPs t-ltlAt) + E# 
S, t 

(13) 

E(~ ) = Z qusqutOas~slPtPt) + ZuZv 
s, t R lz v 

- -  - z ,  2 q~,.@ : , , , , )  - z ~  2 q~ , (~  : u~us). 
t s 

The energy of the isolated atom/l  can be written as 

= s + (14) 

where n,s is the occupation number of AO )us, and a~ is given by the first and 
second terms of Eq. (8). The molecular binding energy is then the sum of promotion, 
interference and quasiclassical terms, defined by (15): 

k [ ~  ( E O ) -  ~ n~sa~ "~ (E(u2) - E~ AE= 

~E= E~ 

+ 

+ E I + EQC) 
(is) 

The potential curves obtained with (15) give equilibrium distances that are a few percent 
larger than the SCF values, but the binding energies and the functional behaviour of 
zXE(R) are clearly superior to SCF energies (see I). Even the homonuclear diatomics 
Li~, C~, N 2, and F 2 are described reasonably well, in contrast to the results of SCF 
calculations. So we are confident that our scheme comprises all the physical effects 
that are essential for chemical binding, and that it is a good starting point for an 
examination of certain approximations leading to simplified formalisms. 

3. Derivation of Approximate methods 

One of the most drastic approximations in simplified quantum mechanical calculations 
consists in neglecting the two-electron contributions altogether. The Httckel (see e.g. 
[8]) as well'as the extended Ht~ckel theories (EHT) [9, 10] are such one-electron 
methods, and they form the basis for most of the qualitative reasoning of chemistry 
textbooks. A particularly attractive feature of these methods is the fact that the total 
energy is supposed to be given as sum over one-electron (orbital) energies. A famous 
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example for the qualitative arguments that exploit this fact is given by the Walsh rules 
[11 ]. Indeed, the usefulness of one-electron methods is considerable, and the theoretical 
concepts of experimental chemists are closely connected to them. The question why 
these methods work at all is usually not dealt with in the textbooks. It is clear that 
two-electron effects play an important role in a molecule but one hopes that they 
somehow cancel each other or that they can be simulated by the empirical fitting of 
parameters. We will see below that there really occurs a lot of cancellation between 
atomic and molecular two-electron terms. This implies that one-electron methods 
are much more likely to work for binding energies than for total energies. 

There are also several semi-empirical methods, where one takes account of the most 
important two-electron terms in the energy expression but reduces the number of two- 
electron integrals to be calculated by one or the other NDO (neglect of differential 
overlap) approximation. The ancestor among the all-electron methods, and still the 
most popular of these, is the CNDO scheme [12] which itself has a predecessor in 
the PPP zr-electron theory [13]. 

In the following we start with Eqs. (15) and (11) in order to derive approximate formal- 
isms with structures similar to the extended Htickel, Hiickel, and CNDO methods. 

3.1. A One-Electron Theory "with Overlap" 

Consider the two-electron contributions to the binding energy in (15). We have shown 
in I that in the vicinity of the equilibrium distance the quasiclassical energy EQC is 
rather small compared with E I and EP, if one restricts oneself to molecules with unpolar 
or weakly polar bonds and excludes such "unusual" molecules like C2, N2, CO. 

The term 

= (G2  _ ( 1 6 )  
,u 

describes the two-electron contributions to the promotion energy and aan safely be 
neglected provided that ground and promotion states of the atoms differ only slightly 
(e.g. in H2 only by orbital contraction). A necessary condition for this to be the case is 
again an unpolar or weakly polar character of the bonds. 

So one can expect that for molecules with (at most) weakly polar bonds the two-electron 
terms in (15) are negligible: 

A E  ~, A E  (1) = 2 ~ Z (Cil~,S)20~las + 2 Z • Z i i Cus3,us, v t c v t -  ~ nusa~ �9 
i •,s i (~,s)q: (v,t) g,s 

(17) 

The variational minimum of &E in (17) is obtained with vectors c i that are solutions 
of the equation 

(H - giS)c i = 0. (18) 

where the matrix/1has a and 3' as diagonal and non-diagonal elements, respectively. It 
is apparent, however, that the one-electron problem (18) cannot in general give reason- 
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able MO vectors c i, because even if the two-electron contributions to the promotion 
energy E (2)) are negligible at the energy minimum, their variation with the coefficients 
is not (EQc on the other hand is rather insensitive to small variations in the ei). 
Therefore, in a heteronuclear bond like C-H in hydrocarbons one gets a charge 
"collapse" towards the higher charged nucleus. 

E ~ the atomic contribution to E(p 2) in Eq. (16), does not depend on the Ci~s, so 
we have to calculate OE~2)/OCius in order to get an idea for an improvement o f / / .  The 
formula of  this partial derivative is rather lengthy, but if one retains only the dominant 
terms (the other terms vanish in the limit of  small overlap elements Sus ' vt) one gets, 
under the assumption ~Eoc/~Cius ~ 0 for the derivative of AE (Eq. (15): 

bAE ~ " ~ i 
3ci s ~ 4(aUs + Cus)C~s + 4 v,t ~" (Tus, ut + Sus,~tCus)C~t (19) 

(~:us) 
where 

C#s- 1 - gqus(laslas[IJslas) + E qut(#sl-~sllatl~tt). (20) 
t 

(~s) 

It is seen that in solving an equation of  the form (18) one should take aus + Cus as a 
diagonal element, and ~us, vt + 1/2Su~, ~t (Cu~ + C'vt) as non-diagonal elements of / ) .  
Apparently, the terms Cus describe the Coulomb interaction of  the electron in AO 
?(us with the other electrons at center g, and the diagonal element %s + Cus represents 
a screened orbital energy. 

These diagonal elements can approximately be regarded as eigenvalues of  an atomic 
Hartree-Fock operator corresponding to a certain valence state. In extended Hiickel 
theory (EHT) one takes the atomic ionization potentials as diagonal elements, and 
this procedure is indeed justified by our derivation. As we want to attain a close re- 
semblance to EHT we introduce in the following the atomic orbital energies e~ that 
one obtains in a Hartree-Fock calculation. 

We define the atomic screening terms Cus as sums of  some Coulomb and exchange 
integrals by 

e~ = a~ + Cus 

and modified one-electron energies, containing the two-electron interference terms, by 

6#s = O~Us + Cfzs. 

From the charge order definition (6) it follows that 

(21 )  

E E E  / i _ cusSus,~tc~t(Cus + Cvt ) -  ~, qusCus. (22) 
i U,s v , t  #,s  

If  in addition to the screened diagonal parameters eus we define a screened non-diagonal 
parameter by 

, = 1 ( c . s  + c v t )  ( 2 3 )  T#s, v t  7gs ,  v t  + g S u s ,  v t  
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we get from Eqs. (17), (21), (22), (23): 

A E , ~ 2  E E  i 2 ( c . , ) 6 1 2 , + 2 E  E E i . i CldS3"12S, v t  Cvt 
i 12,s i (l~,s) 4 : ( v , t )  

o + ~ ( n u s _  q12s)C12s. (24) --  ~ nps612s 
t2,8 p , s  

But we have seen that the "screened one-electron expression" (24) can be an acceptable 
approximation only in the case of weakly polar bonds, where 

n12s ~ q12s. (25) 

Thus, if the approximations leading to (24) are valid at all, then the last term in (24) 
can be neglected as well (see, however, Sect. 4), and the vectors c i that make AE 
minimal are the solutions of 

(H E - e iS)c i= 0 (26) 

where H E has e and 3" as diagonal and non-diagonal elements, respectively. For the 
binding energy we get 

A E :  2 ~ e i -  ~ o (27) n p s e p s .  
i # , s  

So we have expressed the binding energy (not the total energy!) as sum of one-electron 
energies in a formalism that takes the non-orthogonality of the AO's explicitly into 
account (26). 

3.2. A One-Electron Theory "without  Overlap" 

In a Htickel type formalism the overlap matrix S does not show up explicitly in the 
eigenvalue problem: 

(H ~ - X i l ) f  i = 0 (28) 

(I denotes the unit matrix). This does not mean, however, that the interatomic overlap 
can simply be neglected, but only that the empirically fitted parameters in the H H 

matrix have values different from those in H E, and the coefficients flus differ from the 
i One can interpret this fact by the assumption that the overlap is in some way C#s. 

implicitly contained in the elements o f H  H. 

We start from the screened one-electron expression (24) and neglect the last term to 
get 

A E ~ 2 ~  ~ i 2 i ' i (Cus) eus + 2 ~. E ~ cus 7us, vtcvt - ~ nu s eus.o (29) 
i u , s  i (U,s)~= ( v , t )  u,s 

Now we express the reduced resonance parameter/3 as a function of the screened 
parameters e and 3" by using the definitions (10), (21), (23): 

/312s, v t  = ~[las, v t  - -  ~ S ~ s ,  v t ( g p s  § cut)" (30) 
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From the equivalency of  Eqs. (10) and (30) as well as Eqs. (12a) and (12b) it follows 
immediately that instead of (29) we can write 

&E ~ 2 quseus  + 2 ~ ~ ~ i i Cus/3us, v t c v t -  ~ nuse~  (31) 
u,s i (u , s )~ (v , t )  ~,s 

In this formulation the effect of intra-atomic screening is only contained in the diagonal 
terms (compare (31) and (12a)), and this is completely consistent with our inter- 
pretation of/3 as a reduced resonance parameter that contains neither one-center nor 
quasiclassical two-center contributions. 

In order to arrive at (28) one has to introduce the following two approximations [14] : 

1) The MO's c i are also eigenvectors of  S, i.e. 

Sc i = siei. (32) 

The orthogonality relation of the c i then reads 

(ci)+sc f = sj (r  +(c)j = ~ if. 

The new vectors 

f i  = s1/2r (33) 

fulfil the relation 

O :)U :  ij. 

For the charge orders we have 

2 Z && 
i 

and instead of (31) we get 

a s  2 2 2  i 2 f;s/3~zs, v t fv t /S i  2 o (34a) = ( f ; s )  el~s + 2 2 Z 2 i i _ ntzset~g" 
i ~z,s i (# ,s )#(v , t )  #,s 

2) The overlap integrals are very small, 

I S~,~, ~t I < 1 @s 4= vt) (35) 

which means that second-order overlap effects are neglected. 

It follows that s i ~ 1 for all i, and Eq. (34a) is reduced to the simple form desired. 

AE 22 Z i 2 0 = ( f ; s )  6 # s + 2 2  Z Z i i f~s/3~zs, v t f r  2 nuseus.  (34b) 
i #,s i (tx,s)4:(v,t] ~z,s 

For the minimum of  AE we have to solve the secular equation (28) where H H has e 
and/3 as diagonal and non-diagonal elements, respectively. The binding energy is 
obtained from 

A E  = 2 2 ~ki -  Z rltzse~ . (36) 
i /.t,s 
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An alternative procedure that leads from (26) to (28) without any approximation is the 
transformation o f H  E to an orthogonalized AO (OAO) basis. But the interpretation of 
n g a s  parameter matrix in an OAO basis has a number of rather unpleasant con- 
sequences (see Sect. 5). 

3. 3. A CNDO-like Approximation 

The CNDO scheme [12] has originally been designed as an approximate form of the 
SCF procedure. Therefore we have to start from the SCF energy (11) rather than from 
Eq. (15) that contains the correlation correction. Remember that in the derivation of 
(11) we have not employed any kind of NDO approximation but have retained the 
two-electron interference contributions by the definitions of the a and/3 parameters. 

The two-electron one-center terms E~ occurring in (11) constitute the essential 
difference between the CNDO (neglect of E~) and the INDO methods [15] where 
these terms are taken into account. So we easily could derive an INDO- instead of a 
CNDO-like scheme by retaining E~, but this would just complicate our formalism 
without having any impact on the investigation of the overlap approximations because 
E~ is rather insensitive to the variation of internuclear distance. Thus, we prefer to 
consider a CNDO-like scheme which implies neglect of the E~ terms and a treatment 
of the "one-electron" part of (t  1) in the same manner as in the foregoing section: 

(f;s) aus+ f~sl3us, vtf/,t E ~ 2  ~ ~ i 2 ~ ~ i ~ i 

i �9 u,s (u,s)#(u,t) 

+�89 ~ ~ [qusqvt 1 2 -- ~P~s, ut] (Pslls [PtPt) 
b~,S P, t 

+ - -  Z~ ~ qvtOa:utut ) -Z v ~ qus(V:PsPs) . (37) 
u<v k Ruv t s 

The bond order (7) can be rewritten using (33) as 

=2 {(  s) + 4 ~  sj i i j J ) ] "  P~s,~t _1 f/~sf/~i i 2 .. 7(f/ssf/'t)(f/~sfr 
t,l 

Again we apply approximation (35), i.e. neglect of second-order overlap effects, and 
get 

i i 2 

(38) 

(39) 

The minimum of E (note that we are dealing with the total energy in this section) is 
obtained by solving the eigenvalue problem 

( F - e i I ) f  i= O. (40) 
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The matrix F has elements 

fus..s = aus + �89 + ~ qvt(#s#slVtvt)- 
V , t  

(eus) 

Z v ( v  :laslas) (41a) 
lJ 

( ~ )  

(41b) 

The diagonal element contains, in addition to a, not only the intra-atomic Coulomb 
screening (see (20)) but also the quasiclassical interatomic electron-electron and 
electron-nucleus interactions. Of course, the F matrix still shows the main deficiencies 
of the MO approximation, namely the "self-energy" in the second term of (4 l a) and 
the improper asymptotic behavior (second term of (41b)) discussed in I. 

For the total energy we have the expression 

1 [ 1 2 ]  (42) 
�9 Rvv 

#,S  V, t  # < v  

Let us conclude this section with a remark on the two-electron interference terms that 
are contained in the a, ~3, 3' parameters. These terms are dependent on the electron 
density and should therefore be varied in the variational procedure that leads to Eqs. 
(26), (28), and (40). Accordingly, not only the SCFdike Eq. (40) but also (26) and 
(28) should be solved iteratively. But the interference part amounts to not more than 
a few percent of the total electron-electron interaction, and its variation should be of 
minor importance. This has indeed been confirmed in a number of iterative calculations, 
and therefore we keep the gvs, vt terms (5) fixed at their SCF values. 

4. The Two-Electron Contributions to AE 

The results of this and the following sections are obtained with minimal AO bases 
(described in detail in I) that are based on the (10s) (H in H2) and (3s) (H in other 
molecules), (9s) (Li), and (7s, 3p) (C, N, O, F) bases of Huzinaga [16]. In H 2 the 
ls AO is properly scaled, in other molecules the scaling factor for H is chosen as 1.3. 
The experimental values have been taken from [ 17]. 

A one-electron expression for the binding energy like (26) can give reasonable equi- 
librium distances Re and binding energies AE only if the quasictassical energy as well 
as the two-electron part of Ep (16) are relatively small compared to the interference 
and one-electron promotion energies. The quasiclassical energy EQc (15) corresponds 
to classical electrostatic Coulomb interactions between point charges (nuclei) and 
"electron clouds" and should in the case of unpolar single bonds show a potential 
curve-like behavior with a shallow minimum not too far from the equilibrium distance 
and a steep ascent at small distances where the nuclear repulsion dominates EQc 
(see I). Fig. 1 shows the functional behavior ofEQc(R ) in Ha, and this has indeed 
been found to be typical for other unpolar single bonds. The quasiclassical energies 
of Li 2 and F 2 at their experimental equilibrium distances are -0.015 and 0.003 a.u., 
respectively. 



318 F. Driessler and W. Kutzelnigg 
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1 2 3 4 5 

R [ao] 
Fig. 1. The quasiclassical energy EQC of H2, calculated with a scaled minimal basis, as function of 
the internuclear distance 

Unfortunately, a special problem arises with hydrocarbons. According to chemical 
experience the C-C and C-H bonds in saturated hydrocarbons should be nearly 
unpolar, and this expectation is essentially confirmed by all of  the various existing 
charge order definitions provided that the AO basis used for the calculation is well 
balanced or, if minimal, is specially adapted to the molecules in question. But it is well 
known that in the case of  a minimal AO basis as ours, that is taken from atomic calcu- 
lations, the Mulliken charge orders (6) show an unreasonable charge transfer from 
H to C. In CH4, for example, we get q/-z = 0.79 andEQc = - 0 . 1 8 8  a.u., which cannot 
be regarded as small compared to the total binding energy of  -0 .625  a.u. We shall 
return to this point below. 

In double or triple bonds the quasiclassical energy can be relatively large due to the 
strong penetration of  the "electron clouds". By far the most extreme molecule in this 
respect is N2, where we find EQC = 0.533 a.u. at R=Re. 

At first glance, the difficulties connected with the two-electron part of  the promotion 
energy, E~ 2), look even more depressing than those OfEQc. The values of  Ep and E~ 2) 
in Table 1 indicate that H:,  Li2, and F~ again are unproblematic. But in saturated 
hydrocarbons we find that the reasonably small Ep values are the sums of  a negative 
one-electron and a positive two-electron part that are an order of  magnitude larger 
than Ep itself. Obviously, the large charge transfer from H to C, due to our minimal 
basis and the charge order definition (6), is responsible for this result that would be 
disastrous for our one-electron theory (26) if this were solely based on the neglect 
Of EQc and E/~ 2). 

If  one does an energy optimization of  the 2s and 2p AO's at carbon one gets 
E~ z) = 2.07 a.u. in CH4, so the problem is not solved by a modification of  the basis. 
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H2 a 0.037 
Li2 0.012 0.025 
C2 0.298 0.191 
N2 1.198 0.603 
F2 0.078 0.038 
CH4 -0.087 2.837 
C2H6 -0.354 4.149 

Table 1. Total promotion energies Ep and their two- 
electron parts "'E~ 2) (in a.u.) for different molecules at 
experimental geometries 

In fact, we are saved by the third approximation introduced in the derivation of  (26). 
Approximation (25) means that we not only neglect EQC and E~ a) but also a term 

IV : ~ (n ,s -  qus) Cus. (43) 

Now it is easily seen that in the case of  polar bonds (regardless of  the "natural" or 
"artificial" character of  the polarity) IV constitutes the main part o fE~  2). In unpolar 
bonds we have n = q and tV = 0 but in polar bonds 141 sums the Coulomb interactions 
of  the transferred charges with the other electrons at the respective atom. Furthermore, 
Ivand E~ 2) are of  opposite sign. This means that the charge transfer part o fE~  1) is 
compensated by (43), as can be seen in the following examples (at experimental 
geometries): 

CO E~ 2) = 1.37 a.u. IV = - 0 . 8 7  a.u. 

CH 4 E~ 2) = 2.84 a.u. IV = - 2 . 4 8  a.u. 

There are other contributions to E~ 2), of  course, but these are partly compensated by 
EQC and, what is more important, are not strongly dependent on the internuclear 
distance, Consequently, we can expect that the EHT-like formalism (26) should yield 
equilibrium distances not more deviating from experiment than those of Eq. (15), 
the starting point of  our derivation. The binding energies, on the other hand, are 
likely to show relatively large errors in general. 

Equilibrium distances and binding energies calculated with (26) are given in Table 2. 
The C-H distance in CH 4 and the C-C distance in C2H 6 are considerably nearer to 
experiment than those obtained with (15). The accuracy in these cases clearly is 
fortuitous but one should note that also in H2, Li2, and F2 the Re values are surprisingly 
good in view of the drastic approxhnations introduced in (26), and these results con- 
firm our physical reasoning given above. 

So we have found that in the molecules just mentioned the sum of the neglected two- 
electron terms is little dependent on the internuclear distance, but this does not mean 
that the sum itself is small. Therefore the binding energies in Table 2 show relatively 
large deviations from experiment (with tile exceptions of  H2 and Li2) but in the 
saturated hydrocarbons are still within the +100% range. This result looks rather un- 
favourable in comparison with the errors in AE  obtained by (15) (<10% for CH4, 
C2H6) but it should be remembered that it is an easy matter to shift the potential 
curves by empirically fitting the parameters that we calculate in an ab initio way. 

a Scaling factor 1.193. 
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Table 2. Binding energies zLE (in a.u.), equilibrium distances R e (in a.u.) and angles obt,-ined with 
the extended Hiickel-type scheme (26) and the "exact" formula (15) 

exp. Eq. (15) Eq. (26) 
2xE Re/~, ~E Re/~, ,~E Re/~( 

H2 -0.174 1.40 -0.170 1.44 -0.149 1.35 
Li 2 -0 .042 5.05 -0.026 5.76 -0.054 5.19 
C2 -0.234 2.34 -0.193 2.72 -0.51 3.2 
N2 -0.364 2.08 -0.132 2.31 -0.423 2.59 a 
F2 -0.062 2.72 -0.082 3.15 -0.488 2.77 
CH 4 -0.625 2.05 (CH) -0.675 2.20 -0.996 2.03 
C2H 6 -1.063 2.93 (CC) -1.113 3.19 -1.875 3.05 
C2H 4 -0.846 2.55 (CC) -0.870 2.75 -1.52 ~2.00 a 

CH2 -0.288 102.5 ~ -0.241 112 ~ -0.459 115 ~ 
HzO -0.350 104.5 ~ -0.284 115 ~ -0.909 100 ~ 

a Solution of (26) gives an unreasonable order of orbital energies (see text). 

In molecules  wi th  mul t ip le  bonds one has rather large E~ 2) values that  do no t  conta in  

charge transfer  contr ibut ions  W. Here a certain cancel lat ion can occur  only  be tween  

EQc and E~ 2), as is shown in Fig. 2 for the N2 molecule .  The m u c h  too  large Re 
value o f  N2 (Table 2) can be explained by  the fact that  the sum Of EQc and E~ 2) has 
its m a x i m u m  at R > 3a o. 

O~ 
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[a.u.l 
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I 

\ 

\ / 

- O~ 

- 1 . 2  

I 2 
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/ '  

f 

5 

R [aol 
Fig. 2. Two electron contributions to the binding energy of N2: the quasiclassical energy EQC and 
the two-electron part of the promotion energy E~ 2). The broken line gives the sum Of EQc and E(p 2) 
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In unsaturated molecules there arises a special problem because the diag0nalization of 
H E gives an order of the one-electron energies e i where the antibonding Zrg orbitals 
are below the highest occupied Og orbital. Indeed, it has already been noted by 
Hoffmann [91~] that in EHT calculations on unsaturated molecules the highest 
occupied o orbitals show a considerable upward shift. So this feature seems to be in- 
herent to EHT (and not to a special parametrization) and must be attributed to the 
neglect of electron repulsion effects. In an iterative self-consistent extension of EHT 
that incorporates essential parts of the electron repulsion [ 10] one gets the correct 
order of orbital energies. The values in Table 2 have been obtained by summing those 
of the e i in Eq. (27) that "should be" occupied. 

Two bond angle calculations are included in Table 2. We know from the foregoing 
discussion that the strongly polar (but single) bonds in H20 should not cause any trouble 
as regards the equilibrium angle, and the results are indeed quite acceptable for such 
a simplified scheme. In CH2 the lb 1 orbital lies below the 3al orbital, whereas the 
latter should be the highest occupied orbital. So the order of these orbitals has been 
reversed in the calculation of AE in Table 2. 

In summary, we have found that an EHT-type method with ab init io calculation of the 
parameters gives rather accurate equilibrium geometries for saturated molecules. This 
fact can only partially be regarded as fortuitous but has been shown to result from a 
physically comprehensible cancellation of the neglected two-electron terms. The 
remaining error is rather insensitive to distance variations but relatively large in hetero- 
nuclear molecules (and F2) which is reflected in the AxE values calculated with (27). 
By a semi-empirical parametrization one can cope with this difficulty rather easily, 
in contrast to a scheme with an inherently wrong distance dependence of AxE (discussed 
in the following section). Finally, the proper order of orbital energies in unsaturated 
molecules can be obtained by a certain incorporation of electron repulsion into the 
formalism, and therefore our findings support the soundness of a scheme like the 
SCEHT [10]. 

5. The Approximate Schemes "without Overlap" 

Let us assume for the moment that Eq. (32) is fulfilled, i.e. that (34a) is still equivalent 
to (26). In order to get the eigenvectors f i  by a simple matrix diagonalization one 
would have to employ a special set of parameters/3 i = ~/s i for each of the  f i .  Now it is 
obvious that for bonding MO's ci we have si > 1, for antibonding MO's s i < 1, and for 
non-bonding MO's (core orbitals and lone pairs) si ~ 1. Approximation (35) therefore 
means that in molecules where only bonding and non-bonding MO's are occupied the 

values are too large in absolute value, and the same is true for the X i corresponding to 
valence MO's (note that non-bonding orbitals are not influenced by the j3 parameters) 
as well as the binding energy. In these cases we can do a little better than using (34b) 
by introducing an averaged overlap eigenvalue 

s,/n 
i ~ val 
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where i runs over the n valence MO's. The 13 parameters in (34b) are then replaced by 

flus, ~t = (3us, ut/ s. (44) 

In the exceptional molecule H 2 where (32) is indeed fulfilled in a scaled minimal basis 
the solution of  (28) now gives exactly the same b E  and Re as the "scheme with over- 
lap" (26) (see Table 2). 

In the CNDO-like scheme (40) one also has to divide the ~ parameters by s. In H2 the 
converged solution of  (40) is then completely identical to the SCF result due to the 
definition of  the two-electron interference parameters (5). 

There are some molecules (e.g. N2, F2, H~) where antibonding orbitals are occupied. 
Still one has s > 1 but a general reduction of/3 like (44) cannot be justified because 
for the antibonding orbitals one should enlarge ~3 instead of  reducing it. In these cases 
we have to use Eqs. (34b) and (40) as they stand, and we can hope that the neglect of 
the s i is partly compensated by the use of  the same orbital exponents both for the 
bonding and the antibonding MO (for a discussion of  this point see [6]  ). All the other 
results given in this section have been obtained after dividing 13 and/3, respectively, 
by s. It is only by this reduction of/3 that binding energies calculated with the Htickel- 
type scheme (34b) are "close to" (i.e. within the +100% range) the results of (26). This 
fact is mainly due to the large overlaps in o bonds (s i ~ 1.6-1.7) whereas in 7r bonds 
one has s i ~- 1.3. In H 2 (experimental geometry) we find s = s I = 1.68, other examples 
for s are: 1.59 in Lia, 1.72 in CH 4 and C2H6, 1.66 in H20.  

Now we have to examine the basic assumption (32) (i.e. the MO's are eigenvectors of  
S) that is fulfilled only if S commutes with H H and F, respectively: 

[H H, S] : 0 IF, S] : 0. (45) 

In order to get an impression of  how closely (45) is satisfied we need a measure for 
the deviation from (45). Because the commutators are real matrices we simply take a 
matrix norm as measure, namely the spectral radius defined by 

cI(A) = I max. eigenvalue of  A I. (46) 

It turns out that the commutators in (45) have spectral radii differing by not more than 
a few percent, so in the following we deal only with o([H H, S] ). Clearly, the spectral 
radius must be a monotonically decreasing function of  the internuclear distance R 
because fo rR  -+oo one has S - + I .  Only in the case of  H2 Eqs. (45) are fulfilled (o = 0) 
for any R. The commutator norms of  Li 2, F2 and CH 4 are given in Table 3 for R values 
around the experimental equilibrium distances Re. In Li2 o as well as its variation with 
R are relatively small, so we get an energy minimum that is not  too bad: AxE = - 0 . 0 4 6  
a.u./Re = 4.25a o with Eq. (28) and AE = --0.033 a.u./Re = 4.30ao with (40). But in 
F 2 and CH 4 that are typical molecules as regards the variation of  a with the inter- 
nuclear distance the Htickel-type formalism (28) gives energy minima at very small 
distances (RFv  < 1, RcH < lao) if it gives minima at all, which has not been checked. 
The CNDO-type formalism (40, 42) contains the nuclear repulsion which guarantees an 
energy minimum for R > 0. But this minimum is located at much too small distances 
and much too large binding energies: R F F  < lao, AE < --3.5 a.u. in F2, and RCH < lao, 
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Table 3. Commutator  norm a([H H S]) of Li2, F 2 and CH4 (in a.u.) for different internuclear 

distances (in a0) 

323 

Li 2 F z CH4 

R Li_Li a RF_ F a RC_ H a 

4.0 0.28 2.5 0.90 1.9 1.95 (1.57) a 
5.0 0.17 2.7 0.62 2.0 1.70 (1.40) 
6.0 0.10 2.9 0.43 2.1 1.48 (1.26) 

a The numbers in parentheses are obtained if only valence AO's are considered. 

A E < - 2 . 5  a.u. in CH4. In Table 3 there are given also those o values for CH4 that are 
obtained by considering just the valence AO's. The variation of o with R is reduced by 
about one-third if one restricts oneself to valence orbitals, but this reduction obviously 
is not enough to save assumption (32). 

It is apparent from these results that the treatment of the one-electron part in Sect. 3.2 
introduces much more serious errors into the computational scheme than does the 
neglect Of EQc  and E~ 2), at least in the vicinity of  Re.  In agreement with our results, 
the first CNDO version (CNDO/1), where the two-center penetration integrals 
Z~(u : las#s) = vuv were calculated by means of the correct integral formula, gave too 
short equilibrium distances and too large binding energies [18]. Only if one incorporates 
new errors into vuv that partly compensate for the approximation (45), e.g. by 
vuv = Z v %  v in CNDO/2 or by the more refined formula of [19], one can get, after 
reparametrization, reasonable results for both Re and AE. 

The problems connected with the "neglect" of overlap have been recognized long 
ago, and there have been numerous attempts to justify this approximation. For the 
one-electron part the neglect of overlap means that Eqs. (32) (the MO's are also eigen- 
vectors of S) and (35) (Sus ' ~t ~ 1) are assumed to be valid. We have found that in the 
usual (canonical) AO basis the assumption (32) does not hold in the general case. But 
it is apparent that (32) as well as (35) are exact in a symmetrically orthogonalized 
[20] AO basis because in this basis we have S = I. Therefore in order to arrive at Eq. 
(28) we simply should transform (26) with S -1/2. So one could argue that the para- 
meters of the semi-empirical theories "without overlap" should be interpreted as 
corresponding to an OAO basis, with the additional advantage that the very drastic 
ZDO (zero differential overlap) approximation 

that is employed in the CNDO scheme is equivalent to the MuUiken approximation in 
an OAO basis. But there are severe objections to this point of view (for detailed 
discussions see e.g. [21-24]): 

The Hiickel, CNDO, and related schemes originally have been "meant" to correspond 
to ordinary AO's, thereby being in agreement with the orbital pictures that serve 
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chemists in their understanding of reactions and bonding situations. If  the semi-empirical 
parameters are interpreted as OAO parameters then either one has to accept much 
more complicated orbital models of bonding or one has to establish the connection 
between OAO parameters and canonical AO's. This back transformation usually is 
omitted because one argues that symmetrically orthogonalized AO's are still localized 
to a high degree. Obviously, this argument has originated from the 7r-electron theories 
where indeed the overlap integrals are rather small (~0.3) and (32) as well as (35) are 
acceptable approximations (first shown by Ruedenberg [ 14]). But for o bonds, where 
one has S ~ 0.7, the whole argument breaks down. 

Concerning the two-electron terms, it has been shown [21-24], that neither in an OAO 
nor in an AO basis the ZDO approximation can be reasonably justified. It is only in 
7r-electron theories that the ZDO approximation does not lead to unacceptable errors, 
because the overlap between neighboring prr orbitals is relatively small and the 
Mulliken approximation for two-electron integrals involving just wr orbitals is in error 
by only a few percent [21, 25]. 

We conclude that semi-empirical schemes "without overlap" suffer from several errors 
in any basis whatsoever, and therefore it is not surprising that for different molecular 
properties one has to use different sets of fitted parameters. 

If we want to compare empirically fitted Hiickel parameters with our calculated ones 
we have to restrict ourselves to 7r bonds. Furthermore, concerning the two-electron 
interference terms g (5) we have to distinguish between the following two cases. In the 
parameter definitions (8), (9) we have multiplied these terms by 0.5 which keeps the 
subsequent energy expressions simple and, in particular, enables us to write the total 
binding energy in (36) as sum over the eigenvalue (plus a constant) as is done in Htickel 
theory. The/3 parameters calculated in this way have therefore to be compared with 
empirical Hiickel parameters fitted for differences of total energies (e.g. delocalization 
energies, bond dissociation energies). 

If, on the other hand, we had intended to calculate ionization potentials, electron 
affinities, and excitation energies then the starting point of our derivation should not 
have been (15) (SCF energy plus left-right correlation) but the SCF energy expression 
as it stands because the molecular properties mentioned above are related to SCF 
eigenvalues via Koopmans' theorem. In this case the empirical Hiicke113 parameters 
correspond rather to the non-diagonal elements of the CNDO-type matrix F (41b) 
than to those of//H. Furthermore, in analogy to the SCF procedure the two-electron 
interference terms should be doubled, this means we have to drop the factor 0.5 in 
(8), (9). 

The different meaning of the Htickel/3 in the two cases is reflected by the fact that the 
respective empirical values for/3 differ by a factor of 3-5. In the literature usually/30 
values are given corresponding to a C-C bond length of 1.397 A (as in benzene), and 
for other compounds one has to apply certain correction factors [26]. The empirically 
fitted values for/3o in unsaturated hydrocarbons range from -0 .7  to -0 .9  eV in case A 
(total energies etc.) and from -2 .5  to - 4 . 0  eV in case B (ionization potentials etc.) 
[81. 
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In calculating the corresponding parameters in our scheme we have to modify Eq. (44). 
Since we are dealing with pure n-electron theory parameters s must be the average of 
those overlap eigenvalues that are associated with n orbitals. So in case A we take the 
t3 occurring in H H, divide it by s0r) and apply a correction for the bond length, if 
necessary. From the molecules C2H2, C2H4, CaH~, C4H6, and C6H6 we get 13o = -0.81 
eV (mean square deviation 0.03 eV). This result is in perfect agreement with the 
empirical fits and lends support to our arguments in the course of the derivation. 

In case B we have to take/7 from (41b) but with doubled g terms, divide by ~(rr) and 
correct for bond length to get 13o = -2 .18  eV (m.s.d. 0.11 eV). The second term in 
(41b) , - lp~s ,  vt (,Uslasl vtut), is somewhat problematic. In benzene this term amounts 
to -2 .9  eV but we know from I that this special term describes the interatomic sharing 
penetration that is grossly overestimated in a one-determinant wave function. In H2 
at R =R e = 1.4a o about 40% of this term is an artifact due to the MO approximation 
with an ever-increasing percentage at larger internuclear distances. So our estimate for 
the sharing penetration term in benzene is about -1 .5  eV which gives a non-diagonal 
element of about -3 .7  eV in reasonable agreement with the empirical'fit. 

We have shown above that the CNDO-type formalism (40) gives unreasonable potential 
curves like the early versions of the CNDO method. But these versions have proven 
especially useful for the calculation of charge distributions and dipole moments, there- 
fore we want to finally examine some charge orders as obtained by (40). In Table 4 
these charge orders are compared with SCF charges and results of (26) (i.e. the extended 
Hiickel-type scheme). One should keep in mind that (40) is an approximation to the 
SCF equations, whereas (26) is a nearly pure one-electron approximation to SCF plus 
left-right correlation. In the unpolar molecules C2 and F2 the results of scheme (26) 
are slightly superior to (40), and in the polar cases both schemes show considerable 
deviations from the SCF results, a fact that, after all, is really not surprising. But there is 
one important point about the CNDO-type charge orders: the total charge transfer in 
polar bonds is much smaller than given by an SCF calculation. This finding offers a 
possible explanation for the success of the CNDO method. The large transferred charges 
in minimal basis SCF calculations are mainly due to the poor basis. The "neglect of 
overlap" in the CNDO methods seems just to compensate for this basis defect which 
facilitates an easy parametrization for dipole moments. 

6. Conclusions 

In current semi-empirical methods there are virtually two ways in which one deals with 
the cumbersome two-electron terms. Either they are dismissed altogether, ending up 
with the simple one-electron schemes like the EHT [9], or they are simplified by some 
NDO approximation. In the latter case one usually employs a further approximation, 
namely the neglect of the overlap matrix in the secular equation (e.g. in the CNDO 
method [12]). 

We have shown that the former procedure can be reasonably justified for molecules 
with not too polar bonds if one wants to calculate not the total energy but the binding 
energy. The usefulness of EHT in the case of nearly unpolar bonds, especially in the 
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Table 4. Charge orders from SCF calculations, the extended Htickel-type (26), and the CNDO-type 
schemes (40), at experimental geometries 

SCF Eq. (26) Eq. (40) 

C in C2 2s 1.35 1.37 1.20 
2pe 0.64 0.65 0.80 

N in N2 2s 1.63 a 1.79 
2l)o 1.37 1.21 

C in CO 2s 1.60 2.03 1.27 
2po 1.03 0.58 0.79 
2p~r 0.53 0.17 0.85 

Gross atomic population 5.68 4.96 5.76 

O in CO 2s 1.74 1.75 1.99 
2po 1.63 1.65 1.95 
2plr 1.47 1.83 1.15 

Gross atomic population 8.32 9.04 8.24 

F in F2 2s 1.96 1.97 1.94 
2po 1.04 1.03 1.06 

CH 4 C2s 1.21 0.95 0.68 
C2p 1.21 1.58 0.95 
H 0.79 0.58 1.12 

C2H 6 C2s 1.17 0.85 
C2po 1.05 1.66 a 
C2prrb 1.20 0.73 

H 0.79 0.71 1.10 

a An improper order of orbital energies is obtained. 
b 2pa is oriented along the C-C bond, 2p~r perpendicular to it. 

case of hydrocarbons, is based on the cancellation of certain terms in the energy 
expression. This cancellation can be understood from the physical meaning of the 

respective terms and can thus not  be regarded as fortuitous. 

The CNDO scheme, on the other hand, seems to be unproblematic only i fSuv ~ 1. 
This condition constrains the justification of CNDO to n-electron systems but  here the 
much simpler Htickel theory appears to work equally well, as can be inferred from our 
ab initio calculation of 7r-electron Htickel parameters. For ~ bonds with their rather 
large overlap integrals the overlap approximations break down, and therefore it is no 
surprise that our CNDO-like formalism with ab initio parameters does not  yield energy 
minima in the vicinity of the experimental equilibrium distances. Of course, by intro- 
ducing empirical parameters one can do much better in this respect than we can with 
our ab initio scheme, but the physical meaning of the empirical parameters in CNDO 
still remains unclear. 

The EHT (and the Hiickel method) implicitly contains the left-right correlation in 
contrast to the CNDO method. So, in principle, only the former method is capable of 
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yielding reliable potential  curves for a large range of  internuclear distances, at least for 

unpolar bonds. 

Among the numerous semi-empirical methods described in the literature that approxi- 
mate the two-electron integrals in some way probably the least drastic approximations 
are employed in the MADO method (Mulliken Approximat ion for Differential Overlap 
[27], see also [23]). Here the overlap integrals are fully retained and the two-electron 
terms are simplified by the Mulliken approximation.  This method has been very success- 
ful in the calculation of  excitat ion energies, but  we know from I that the Mulliken approxi- 
mation (i.e. neglect of  two-electron interference effects) is not  a good approximat ion 
in the general case and has a very large effect on the total  energy. 

In view of  the fact that nowadays standard SCF programs are available for anyone and 
computer  time does not  play such a crucial role as it did some years ago we suppose 
that the future of  semi-empirical formalisms lies in methods like [28] (i.e. only the 
correlation energy is treated semi-empirically) rather than in ever-new refinements of 
the old semi-empirical schemes with their gross approximations.  Nevertheless, the latter 
are directly related to simple models of  bonding and thus are likely to keep their con- 
siderable didactic value. Although some caution is indicated in using these schemes, 
because one might get the proper result for the wrong reason (see e.g. [29],  page 15-16), they 
can in many cases help to improve the understanding of  bonding situations and reactions. 

It is this aspect of  our simplified schemes in I and in this work that we are going to 
exploit  in Part III  of  this series. There we will consider some special problems, for 
example, the comparison of  the bonding situations in H~ and H 3, and the failure of 
one-electron methods in the latter case. 
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